US 2005/0005261 Al

existing or new technology or data format can be integrated
with metadata aware components once the metadata has
been developed for the new structure. This means the
development of a new type of component instantly makes
the new functionality and data in a component available for
use by any new or existing systems.

[0102] The component integration engine of the present
invention may use command architecture that uses metadata
to describe input, instructions, and output. Instructions are
used to set parameters used by a command to determine how
to perform the command. For example a command may take
the name of an email transport protocol to determine how to
communicate with an email server. Instructions can be
described by metadata. Metadata can describe attribute
names and value constraints, necessary method invocations,
necessary constructors, and events that are generated during
execution. A command provides metadata to describe the
structure and type of the data it accepts as input. Metadata
can describe attribute names and value constraints, available
method invocations, available constructors, and events that
are generated during execution of methods on the input data.
A command provides metadata to describe the structure and
type of data it produces as output. Metadata can describe
attribute names and value constraints, available method
invocations, available constructors, and events that are gen-
erated during execution of methods on the output data.

[0103] Commands may be combined to perform complex
actions and create component integration. This integration
of managed components, unmanaged components, struc-
tured data, and unstructured data through the “command
architecture” can be used to produce applications without
programming new code. Existing components provide
access to resources, existing commands provide the func-
tionality necessary, and metadata structures them together to
produce the desired process.

[0104] If a data structure does not exist which is found
necessary to perform a new process, the data structure may
be created as a dynamic data structure, such as XML, or it
may be compiled from source code into an object which is
then made available to the run-time environment. In the
present invention, a mechanism also exists to create a data
structure using virtual implementations to create the struc-
ture and related operations.

[0105] If a function does not exist which is found neces-
sary to create a new process, the function may be created
dynamically by combining existing functions, or it may be
compiled from source code into a new command which is
then made available to the run-time environment.

[0106] In the present invention, a mechanism exists to
request the performance of a command or a combination of
commands. The request may be received from a variety of
sources including but not limited to a network connection, a
web page submission, or a GUI client.

[0107] A metadata-based XML marshalling/un-marshal-
ling system allows the component integration engine to
convert any object to XML by retrieving all of its attributes
via its metadata, then writing the type of object and the name
and value of each attribute as XML. This allows a compo-
nent integration engine to automatically convert any object
to and from an XML metadata format. The component
integration engine can also use XSLT templates to convert

Jan. 6, 2005

from unknown XML formats to the expected metadata
formats in order to allow it to construct appropriate objects
for any XML request. XSLT commands exist in the com-
mand architecture. The component integration engine can
use structured metadata customizers to access XML in
structured formats other than the standard metadata format
to convert XML to objects and objects to XML.

[0108] In some embodiments, the meta-implementation
layer and component integration engine may include a
Hierarchical Model View Controller that uses events based
on metadata (an HMVC pattern). The model-view-controller
pattern has been redesigned to use a “model”—“model
controller”—*“view controller”—“view” pattern, each part
of which is allowed to be a hierarchy of objects. Commu-
nications occur only between adjacent parts. Communica-
tions between the model controller and view controller only
occur at the top-most level of the hierarchy, instead of the
traditional MVC or HMVC patterns which allow commu-
nication between any parts in the system and at any level.
Adding this restriction between the model and view con-
trollers allows greater distribution to occur by inserting a
“forward” between them (leading to the pattern of
“model”—“model controller”—*“server-side forward”—
“client-side forward”—*“view controller”—“view”). Events
define the values they carry using a definition. Upon initial
registration of an event listener, the metadata definitions are
passed to the listener followed by the current values. This
innovation allows listeners to more correctly respond to
events by adjusting to differences in the metadata, or use the
metadata to more fully constrain values.

[0109] Metadata used in the meta-implementation layer
and component integration engine of the present invention
does not require that the object implement a specific inter-
face, extend a specific parent model, or follow a specific
naming convention as is required by other contemporary
metadata mechanisms. Instead metadata is compiled into a
customizer class that recognizes the metadata for a specific
type of object. Compiled metadata is faster than dynamic
metadata and can be applied to any object rather than objects
that derive from a common class, implement a specific
interface, or use a standard naming convention. The objects
being described do not need to be designed or implemented
differently in order to be described by metadata.

[0110] FIG. 1 illustrates a meta-implementation layer of
the present invention that includes a metametamodel reposi-
tory, a metamodel repository and implementations. The
metamodel repository includes enumeration descriptors,
role descriptors, hint descriptors, datatype descriptors, con-
straint descriptors, attribute descriptors, other element
descriptors, parameter descriptors, method descriptors, sig-
nal descriptors, interface descriptors, model descriptors, and
package descriptors. The implementations include includes
enumeration implementations, role descriptors, hint imple-
mentations, datatype implementations, constraint imple-
mentations, attribute implementations, other element imple-
mentations, parameter implementations, method
implementations, signal implementations, interface imple-
mentations, model implementations, and package imple-
mentations.

[0111] The functioning of the various descriptors and
implementations of the meta-implementation layer of FIG.
1 are described in more detail below. Also, it should be



